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ABSTRACT

-Identifying the underlying decision criteria used by operators to classi&y

system state and revealing the way in which that information is internally

represented by individual operators is one of the major challenges facing

designers of decision aids for process plants. This researqh describes the

use of multidimensional scaling (MDS) to probe the structure and composition

of the mental models of used by operators to identify system state, and

evaluate the impact of different display representations on those models.

Twenty subjects were trained to classify instances of system data. Pairwise

similarity ratings of instances of system data were analyzed by MDS to

reveal the dominant dimensions used by operators. Results showed that

significant individual differences emerged, and that the dimensions used by

subjects were also a function of the type of display representation.
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INTRODUCTION

Identification and recognition of system state is fundamental to the

effective supervision of a complex system. In supervisory tasks where

control decisions are based on multidimensional data and information, the

operator's ability to map the values of critical system variables to known

definitions of system state is the prerequisite step to selecting the best

course of action-[1].

Accurate identification of system state presupposes, however, that the

operator possess a well developed internal model of the criteria defining

system state categories [11, [2], [31, [4). Unfortunately, designers of

user interfaces and decision aids for complex systems are hindered by an

incomplete understanding of both the knowledge used by operators to assess

the status of a system, and the impact of the operator's mental model on

performance. That incomplete understanding is due, in part, to the paucity

of techniques for assessing the operator's internal model and relating the

composition of that model to performance. The primary purpose of the

research presented in this paper is to explore the use of multidimensional

scaling (MDS) as a method for probing the mental models of system state

categories.

Fundamental to this research is the notion that identification of

system state is a categorization process. In our approach to system state

identification, a system state category, Si, is defined by a set of system

| ! ! m q1
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state attributes, (a,, . . . , an}, with prespecified ranges of values for a

set of attributes delimiting membership in a specific state category.

Therefore, a system state category is defined by:

S i  = w 1 ,  'n a , n )n

where the weights, wj, for each attribute determine the importance of that

attribute to specifying a particular system state. In this research,

process variables serve as state attributes. Thus, an instance of system

state is a specific set of values for the process variables from a particul-

ar state category. Thus, classification of an instance of system data

requires that the operator map data from each of the relevant process

variables to a set of decision criteria defining a system state category

151, [61, 17).

Knowledge of the mapping of system data to system state categories is

contained within the operator's mental model of the decision task. The

model must contain, at a minimum, knowledge of the attributes which define

system state, the relative importance of those attributes in identifying a

specific state, and the decision rules used by the operator to map attribut-

es to state categories. The role of a mental model is to organize that

knowledge in such a way as to facilitate classification of system state.

The operator's performance, then, is dependent upon his or her ability to

match the data from each information source to an internal model defining

category membership, and accurately classify the state of the system. A
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well developed mental model, then, is composed of the knowledge necessary

for making an accurate and timely assessment of the status of a system.

Using Multidimensional Scaling

MDS is used in this research to probe the structure and composition of

the internal models used by operators to identify system state. MDS is

method based on least squares regression analysis which relates the judged

dissimilarities between objects to derived distances in a multidimensional

geometric space [81, [91, (101, [111. According to the MDS approach there

should be a reliable relationship between the cognitive construct "similari-

ty" and distance in a geometric space. In general, objects which possess

common features or attributes should be rated as similar and be located in

close proximity in space (in the context of this research, the objects are

instances of system data). Conversely, dissimilar objects should be distant

from each other in that same space. The technique has been used in a number

of contexts, including concept learning [121, judgmental process in analogi-

cal reasoning [131, the evolution of conceptual structure [141, and visual

inspection 115].

The MDS algorithm used in this study [101, [111, represents the

similarities between instances of system data as euclidean distances in a n-

dimensional space. The method generates spatial configurations of a set of

rated objects, thus providing a number of potentially useful measures of

distance and structure for probing conceptual models. In addition to the

spatial configurations, the algorithm provides the coordinate position of
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each object in the n-dimensional space, and a measure of goodness-of-fit

called "Stress" to evaluate the configuration.

Stress is defined as the amount of variation between the theoretical

distances represented by the similarity rating data and the distances

calculated by the algorithm. In this experiment, solutions.yere generated

for one to five dimensions. The objective was to find the number of dimen-

sions which minimized the value of Stress; thus, the best fit is defined as

that number of dimensions where Stress reaches an asymptotic level. The

spatial configurations representing the best fit can then be visually

examined to determine the extent of clustering and interpret the meaning of

the dimensions. Thus, the spatial configurations reveal the attributes used

by operators to assess the similarity between instances of system data.

The coordinate points for each object can be used to derive measures of

structure and distance; in this research, structural ratios and directed

distances were the measures of interest. The structural ratio is a measure

of the degree of categorical clustering of a set of objects. The ratio is

based on the presupposition that items which are clustered together in the

same geometric space are in some way categorically similar. The ratio

relates the mean intracategory distances to the mean intercategory distances

1141, [151. As category structure increases, the distance between members

of the same category decreases, the distance between categories increases,

and the structural ratio approaches zero. Thus, the ratio can be used to

characterize the strength of a dimension for a particular operator. Dimen-

sions which produce the most strength (i.e., a structural ratio closest to
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zero) are the most dominant in the operator's mental model and are the most

likely to be reflected in his/her classification performance. Thus, the

assessment of a dimension's dominance within a mental model is critical to

finding a link between a mental model and performance, and the coordinate

distances provide a means for weighting the importance of each dimension.

Unfortunately, the structural ratio is sensitive only to dimensions

which produce clustering, and cannot characterize directed distances between

instances in a multidimensional space. As a result, measures of directed

distances must also be derived by calculating the euclidean distance between

instances across all dimensions of interest, using an object or set of

objects as a referent for the vector distance.

The Effect of Display Type

An important consideration in the development of an operator's mental

model of system state categories is the manner in which system data is

presented during training. There has been a number of recent studies con-

cerned with the issue of the physical (display) representation of system

data 1161, [17], [181, [191, [20]. The results of those studies indicate

quite clearly that the choice of a display is dependent upon the underlying

statistical properties of the task, the type of task (e.g., fault detection

or fault diagnosis), and the degree of uncertainty involved in identifying

the state of the system. None of those studies have directly assessed the

impact of display representation on the operator's internal model of the

task, or considered the real possibility that the operator's knowledge of a
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system will be fundamentally influenced by the way in which data is

displayed rhis research specifically addresses that issue.

Research Objectives

This research has four very specific objectives related to the use of

multidimensional scaling (MDS) and the design of user interfaces. Those

objectives are: 1) explore the use of MDS as a method for revealing the

composition and structure of an operator's mental of state categories; 2)

determine the relationship between an operator's internal model and classif-

ication performance; 3) evaluate the differences between the models revealed

by the group MDS analysis and the models used by individuals; and 4) deter-

mine the extent to which display representations affect the composition of

the operator's mental model.

Objectives 1 through 3 are primarily concerned with evaluating the fea-

sibility of MDS as a tool for assessing operator knowledge of state categor-

ies. Since the construction of effective decision aiding and support sys-

tems rely upon accurate a priori knowledge of relevant decision variables,

there is a need for developing knowledge acquisition tools which can rapidly

identify those variables and simultaneously evaluate individual operators.

Objective 4 addresses an important interface design issue for control

systems; given that system data must be displayed on a screen, how does a

specific type of display affect the operator's knowledge of system state

categories? In this research, MDS will be used to compare the dominant
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dimensions of two groups of operators using different types of displays.

The outcome of the MDS analysis will reveal the differences, if any, in the

set of attributes used by the operators viewing the same data displayed in

physically different forms.

The objectives of the research required that a simulated task be used

which captured the essence of the eognitive demands placed on operators when

identifying system state. The multidimensional decision task used in prev-

ious research [181, [19], [201, was used in this study. The task required

the operator to integrate information from a number of sources (in this

case, process variables), and use that information to identify (classify)

the state of the system. Thus, the operator had to learn, during training,

the mapping of values of process variables to system state categories.

To probe the mental models of syszem state categories, operators rated

the similarity of a subset of instances of system data after learning. The

classification training task allowed the mental model to develop, and the

similarity ratings provided the data necessary for characterizing the comp-

osition and structure of the operator's internal model. Since the focus of

this study was on well-developed mental models, data is reported on only

those participants in the study who were able to accurately identify system

state.
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METHODS and PROCEDURES

Subjects

Twenty students irom the University of Massachusetts served as subjects

in this experiment. Subjects were paid $5/hour for their p4rticipation.

The 20 subjects represent only those who reached a prespecified criterion

after training.

Apparatus

A DEC Pro 300 series microcomputer was used for presenting instances of

system state and recording subject performance data. The stimuli were pre-

sented on a high resolution graphics display. A second monitor was used to

present feedback to subject responses.

System State Categories

System state categories were defined in this experiment as ranges of

values along four dimensions. Each dimension represented one of four

process variables; a specific range of values for each process variable was

combined to define a state category. The ranges of values of the variables

for each of the four system state categories is shown in Table 1.
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INSERT TABLE 1

ABOUT HERE

The ranges of values for each state category define the correlational

structure (5]. For instance, State Categories 1 and 3 share the same range

of values for the third and fourth process variables, as do State Categories

2 and 4. For the classification task, then, those values provide the

information necessary to narrow the possibilities to a pair of system

states. To distinguish between the chosen pair, the information provided by

the first and second process variables is needed. The correlational

structure of this task makes it necessary to attend to more than one

variable in order to accurately classify system state.

Uncertainty was introduced by creating a borderline condition between

pairs of state categories. A borderline condition exists when a range of

values for one or more of the process variables simultaneously defines two

system states. Thus, the borderline condition represents an area of uncer-

tainty about the identity of an instance of system state.

Experimental Task

Subjects were trained as "operators" to classify the information pre-

sented on a display into one of four system state categories. The classifi-

cation scheme required operators to integrate information from each of the
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four process variables. Accurate classification required that the operators

learn the decision rules defining state category membership. To insure that

the operator experienced the full range of exemplars from a state category,

the frequency of instances selected from a category remained constant.

Training consisted of classifying 64 instances of system data from each sys-

tem state category for a total of 256 classification trials. Only operators

who attained 90 percent correct classification accuracy were allowed to

continue in the experiment.

The 20 Operators who reached criterion were then asked to rate the

similarity of a subset of instances of system data. Four representative

instances of system data from each state category were selected for inclus-

ion in the pairwise similarity rating sessions. The four instances from

each category (represented by a letter) are presented in Table 2. The in-

stances were chosen to represent the full range of possibilities from that

category. All possible pairs of these 16 instances were constructed (excl-

uding identical pair combinations) and randomly ordered for presentation to

the operator. There were a total of 120 pairwise combinations.

INSERT TABLE 2

ABOUT HERE
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System State Representations

Two types of display representations were used to present system data:

a separable display; and an integral display. The Digital display was a

separable representation presenting the values of the four process variables

as digits in a horizontal line. The Configural display was an integral rep-

resentation of the same data, presenting the values of the process variables

on a two-way axis. Examples of the two types of displays are presented in

Figures la and lb.

INSERT FIGURES la AND lb

ABOUT HERE

Procedure

The experiment involved three sessions: 1) the Classification Training

session; 2) the Post-Training similarity ratings session; and 3) the Extend-

ed Practice classification session. Each operator participated in the exp-

eriment for approximately 2 hours.

The Classification Training Session. Subjects were first briefed

concerring thp purpose of the experiment and were asked to sign an experi-

mental consent form. Subjects were then randomly assigned to either the

Configural or Digital display group. During training, the "operators"
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classified instances of system data. Presentation of each instance consti-

tuted a training trial. Each training trial followed the same pattern:

presentation of an instance of system data; the operator's response; and

feedback on the accuracy of the response. The cycle was repeated until each

operator had viewed all 256 trials in their stimulus set.

Post-Training Similarity Ratings. After reaching criterion, pairwise

similarity ratings were solicited for the 120 pairwise combinations present-

ed in a random order. The pairwise similarity ratings were obtained by

rating each of the 120 pairs of instances on a scale from 0 (very similar)

to 10 (very dissimilar). The pairs of instances were presented to the

operator in the from of the representation corresponding to his or her

display type. Operators were instructed to use whatever criteria seemed

appropriate.

Extended Practice. After a short break following the similarity rating

session, operators performed a second classification session with the same

stimulus set as used in the Training session. The stimuli were presented in

a different random order and the operators received no feedback about their

classification performance. The data from this session provided the perfor-

mance measures for comparison to the results of the MDS analysis.
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Data Measurement and Analysis

Two types of data were collected to investigate the operator's internal

h.odel and classification performance. Each type of data analysis is descri-

bed in the following sections.

Multidimensional Scaling Data. The post-training similarity rating

data for each operator was used as input for the MDS analysis using the

KYST-2 scaling program. Spatial configurations were generated by KYST-2 to

determine the dimensions used by each operator. Solutions were generated

for one to five dimensions. The configurations which produced the best

value of Stress were visually examined to determine the extent of clustering

and interpret the dimensions. The result of that analysis was a list of the

dimensions used by the group and by each operator.

Structural ratios and direct measures of distance were derived from the

coordinate distances obtained with the MDS analysis. The structural ratio

(as discussed in the Introduction) was used as a measure of the degree of

categorical clustering of the instances of system data. Structural ratios

for each of the dimensions identified in the visual inspection of the

spatial configurations were calculated for each operator.

Since structural ratios are not sensitive to vector distances between

instances, measures of directed distances were also calculated. The vector

distance of interest to this research was Distance from Borderline. The

starting reference point for the calculation of the measure were the four
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instances from each category located in the most proximate position to the

bo;.derline (instances D, H, L, and P). Within each category, the distance

between that category's reference point and all other instances in the

category were calculated. This produced three step sizes of distances from

the borderline (e.g., the distance between pairs of instances D and C, D and

B, and D and A in State Category 1). These distances were calculated for

each State Category for each operator.

Performance Measures. The performance measures of interest in this

study were accuracy and response time. Accuracy (percent correct classific-

ations) for each operator was averaged over eight blocks of 32 trials in

both the Training and Extended Practice sessions. The data from the Train-

ing session were used to assure that the operators had reached the 90%

criterion performance level in the last 100 trials of that session. Only

data collected from operators who reached the criterion were used in the

analysis.

Response times were measured as the interval between the onset of an

instance of system data and the operator's classification response. Res-

ponse times were measured in milliseconds and only correct response times

were used in the analysis; response times were averaged across eight blocks

of 32 trials for each operator. The performance data were submitted to

multifactor repeated measures ANOVA.
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RESULTS

Interpretation of Group Dimensions

A summary of the Group and Individual MDS analyses is presented in

Table 3. The Group results showed that, after training, the best fit for

the Configural display group was in three dimensions and the best fit for

the Digital display group was in four dimensions. The spatial configura-

tions producing the best fit for the Group MDS analysis were visually in-

spected and labels assigned to the dimensions. The results of the analysis

indicated that the dimensions used by the Configural display operators and

the Digital display operators were different. The dimensions underlined in

Table 4 are the interpreted dimensions for each display group.

INSERT TABLES 3 AND 4

ABOUT HERE

The dominant dimensions for the Configural display group were Orienta-

tion and Distance from Borderline. A representative, two dimensional graph

of a Configural operator's spatial configuration is presented in Figure 2a.

The figure clearly shows Orientation as the polarization between the two

pairs of state categories (1 and 3, and 2 and 4) along the x-axis. Distance

from Borderline (i.e., instances occupying the same relative position from

the borderline) is represented by the y-axis; instances occupying the same

relative position from the borderline (e.g., instances A, E, I and M) occupy
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the same relative position along that dimension in the spatial configura-

tion. A third dimension (not shown) was also related to the shape of the

stimulus; instances which were primarily "thin" (one side of the figure

always significantly longer than the opposite side) were clustered at one

end of the dimensions with "blocky" instances clustered at the other end of

the dimension.

INSERT FIGURES 2a AND 2b

ABOUT HERE

The dimensions used by the Digital display group were distinctly diff-

erent. Figure 2b presents a two-dimensional plot of two of the four dimen-

sions revealed in the Group analysis. In fact, the figure shows three of

the four dimensions: mid-range values to extreme values from left to right

along the x-axis; values of process variables 0 and M defining state catego-

ries 1 and 3 at the top of the y-axis, and values of B and H defining state

categories 2 and 4 at the bottom of the y-axis; and four distinct areas in

the geometric space corresponding to category membership (shown by the dot-

ted lines in the figure). The fourth dimension (not shown in Figure 2b)

corresponds to the values of 0 and M; values of process variables Q and M

defining state categories 3 and 4 are clustered at one end of the dimension

while values of 0 and M defining state categories 1 and 2 are clustered at

the opposite end of the dimension.
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Interpretation of Individual Operator Dimensions

Although the Group MDS analyses revealed a number of dominant dimen-

sions, the Stress values indicated that the best fit to these data was not

obtained. The Individual data in Table 3 shows that scaling each operator's

data produced excellent Stress values, and a best fit in more dimensions.

This result indicates that the Group MDS analysis did not completely reveal

all the dimensions being used by operators in this task.

The spatial configurations for each operator were visually inspected

and labels assigned to each dimension. All the dimensions identified across

operators are presented in Table 4. Of the six dimensions identified for

each of the two groups, Category Membership and Distance from Borderline

best reflect the underlying statistical properties of the task. The remain-

ing four dimensions represent attributes which are unique to the type of

display. Thus, while operators in the Configural group were clustering in-

stances of system state on the basis of "shape", "orientation", etc., Digi-

tal operators were using the dimensions of "mid/extireme values" and rela-

tive high and low values of process variables B and H.

It is interesting to note that clustering in the Configural group is

similar to clustering in the Digital group despite the fact that the attri-

butes are different. For instance, the Orientation dimension in the

Configural group is the counterpart to the Digital dimension that separates

instances based on relative high and low values of process variables B and

H. Thus, while the attributes defining corresponding dimensions differ



Coury, Zubritzky and Cuqlock-Knopp

according to the unique properties of the displays, clustering of instances

along those dimensions coincide. Similar correspondence was found for the

other dimensions.

Notice that not all of the dimensions are continuous. In a number of

cases, clustering occurs on the basis of discrete or nominal values along a

particular dimension. This illustrates that the decision criteria used by

the operator to judge similarity may not be based strictly on a continuous

scale, but based on the presence or absence of a specific value or set of

values for a given attribute.

Structural Ratios as a Measure of Clustering

To determine if a particular dimension dominated an operator's concept-

ual space, structural ratios were calculated. If one assumes that the di-

mension producing the minimum structural ratio is the dominant dimension for

that operator, then the results clearly illustrate the difference in empha-

sis between operators. For example, Category Membership is the dominant

dimension for three of the Configural operators and for two of the Digital

operators. Here, however, the similarity ends. The Orientation and Exact

Shape dimensions are dominant for the remainder of the Configural group,

whereas the rest of the Digital group found the Distance from Borderline and

the Mid/Extreme dimension to be the most important. These results suggest

that operators can perceive system data in significantly different ways,

especially among the Digital display operators in this experiment.
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Direct Measures of Distance

Judgments of similarity based on dimensions other than category member-

ship (such as Distance from the Borderline) will not be reflected in the

structural ratio. In such situations, the position of an instance in geome-

tric space can be captured only by a proximity measure which characterizes

the relative distance between instances along the dimension of interest.

For example, if Distance from the Borderline is a dominant dimension for the

operators, then instances occupying positions in the category that are dis-

tant from the overlap region between state categories should be proportion-

ally distant in the geometric space.

To test whether Distance from the Borderline became a dominant dimen-

sion for operators after training, the coordinate values from the MDS analy-

sis were used to calculate directed distance measures. Mean distances for

the three step sizes from the borderline for the Configural display opera-

tors and the Digital Display operators are presented in Figure 3.

INSERT FIGURE 3

ABOUT HERE

For the Configural display operators, distance increased as the posi-

tion of instance within a state category away from the borderline condition.

A similar relation between distance and position from the borderline is not

evident in the Digital display group. An ANOVA of these data showed that
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Distance from the Borderline, F(2,36) = 11.07, p = .0002, and the Distance

from Borderline by Display type interaction, F(2,36) = 26.48, p < .0001,

were highly significant. An analysis of the simple main effect of Distance

from Borderline for the Digital display group found the differences between

step sizes not to be significant, F(2,18) = 2.39, p = .1203. These results

confirm the previous analysis of dimensions; in general, Distance from

Borderline was a dominant dimension for the Configural display operators,

but not for the Digital display operators.

Evaluating the slope of the function relating the scaled distances to

Distance from Borderline position reveals the dominance of that dimension

for the Configural display operators. A multiple regression analysis of the

data revealed a correlation of r = 0.56 between borderline distance measures

and scaled distances. The positive trend is evident for all Configural

operators but one. Since that operator's data points were more than 2.5

standard deviations from the mean, his data were excluded and the data

reanalyzed. The correlation for the corrected analysis increased to r =

.84, indicating a strong positive relation between Distance form Borderline

and scaled distance measures for virtually all of the operators in the

Configural display group.

As might be expected, the correlation between scaled distances and

Distance from Borderline was very low (r = .16) for the Digital display

group. Inspection of the slopes of the regression equation for this group

provide a number of interesting insights into the effect of other dimensions

on the scaled distance measure in this analysis. For instance, the downward
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trend evident in the distance measures of so,,ie of the Digital operators may

be the result of an interaction between dimensions. Since Distance from

Borderline is not dominant for the Digital group, the interaction with the

Kid/Extreme dimensions would cause the distance between the closest and

farthest borderline positions to be less than the distances between the

closest and middle two borderline positions.

Relating Dominant Dimensions to Performance

The importance of Distance from Borderline to the two groups of opera-

"s was mirrored by their performance. Figure 4 shows mean response times

for the Digital and Configural display operators as a function of Distance

from the Borderline during the Extended Practice session. Analysis of these

INSERT FIGURE 4

ABOUT HERE

data showed that response times for the Configural group significantly de-

creased as Distance from the Borderline increased; whereas the response

times for the Digital display group were not significantly effected by Dis-

tance from Borderline. The ANOVA confirmed these results. Distance from

the Borderline was found to be highly significant, F(6,102) = 15.98, p <

.0001, as well as the Distance from Borderline by Display type interaction,

F(6,102) = 2.59, p = .0223. Analyses of the simple main effects of display
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type found a significant main effect for Distance from the Borderline for

the Configural display, but not for the Digital display.

When Figure 4 is compared to Figure 3, a clear trend emerges for the

Configural display; as distance from the borderline increases, response

times decrease. Thus, response times are inversely related to Distance from

the Borderline for the Configural group operators. Such a rplation is not

evident for the Digita] group, indicating that this dimension was relatively

unimportant in determining overall operator performance.

To find a more direct relationship between classification performance

and the dominance of the Distance from the Borderline dimension, the differ-

ence in response times for those instances used in the MDS analysis were

calculated and compared to the slope of the distance function for each

operator. For example, the difference in response times between instances a

and b, a and c, and a and d represent the data for State Category 1. Diff-

erences for the three points were averaged across state categories, provid-

ing three response time data points for each operator. Directed distances

were calculated in the same way. To assess the magnitude of the change of

the slope, confidence limits were established for each operator's data using

the Tukey(a) procedure. If Distance from the Borderline dimensions reflects

the operator's internal conceptual model, then the slope of the difference

in response times should correspond in some way to the slope of the distance

measures.
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For the Configural group, those operators whose response times did not

differ significantly across borderline conditions had an average slope of

0.156; operators whose response times differed significantly had an average

slope of 0.394. In the Digital group, operators producing a significant

difference in response times had an average slope of -.028, with those

operators exhibiting no significant difference in response times had an

average slope of -.081.

CONCLUSIONS

The primary goals of this exploratory research were to show that multi-

dimensional scaling is an effective methodology for: 1) revealing the

underlying decision criteria used by operators to classify system state; 2)

determining the impact of display representation on the development of the

operator's internal model during learning; and 3) relating the operator's

internal model to performance. In general, the results reported in this

paper show that MDS is an effective and useful tool for evaluating the

structure and composition of an operator's mental model, and an effective

method for assessing the impact of display representations on those internal

models.

Composition of the Operator's Model

An important result of this study is that the information used by the

two display groups to identify system state was qualitatively different.

The comparison of the spatial configurations derived from the MDS analysis
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after training showed that the dominant dimensions for the Configural dis-

play group were different than the dominant dimensions for the Digital dis-

play group. For instance, Distance from the Borderline become a dominant

dimension for the Configural display operators, but not for the Digital

display operators.

The Digital display operators, on the other hand, placed a greater

emphasis on the actual values of the process variables. For instance, the

pairing of the state categories based on the values of process variables B

and H emerged as one of the dominant dimensions during training. In addi-

tion, the Digital operators also grouped instances based on the values of

process variables Q and M.

Despite differences in the composition of the operators' internal

model, the structure of that model appeared to be relatively stable across

operators. The evidence for such a concljsion can be found in the corres-

pondence in the dimensions used by the two groups. For every cluster of

instances found in the Configural group, there is a corresponding cluster of

instances in the Digital group. Thus, both groups learned the same underly-

ing correlational structure of the task, but mapped different attributes to

state categories. This is not altogether surprising since the attributes of

the displays are driven by the same underlying statistical properties; i.e.,

the relationship between attributes is the same in both displays since

changes in the values of the process variables occur in a correlated fash-

ion. One can conclude, then, that the structure of the operators' mental
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model in this task is the same, but composed of different information about

attributes defining state category membership.

Therefore, we can conclude that the form of the display representation

has a major impact on what it is that operators learn about state category

membership. The choice of a display for representing system data becomes

complicated by the fact that the display will significantly influence the

composition of the operator's internal conceptual model of the task. In

addition the results provide further evidence that the statistical propert-

ies of a decision task and the physical representation of system data are

two important, but fundamentally different, issues in decision making. Pre-

vious research has tended to side-step that issue, creating experimental

situations where the results may be confounded by the interaction between

the underlying correlational structure of the task, and the physical repre-

sentation of the data.

Relating Models to Performance

The fact that MDS can identify the structure and composition of the

operator's internal model is an important result. The ultimate utility of

the method is, however, dependent upon the relation between the operator's

model and performance, and the ability of the results of an MDS analysis to

predict operator performance. It was quite gratifying to see in this study

that MDS was sensitive to the dimension which had the greatest impact on the

performance of the Configural group. One can conclude, then, that Distance

from the Borderline was the dominant dimension for the Configural display
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operators, and constitutes the primary underlying decision criterion used by

those operators to process system data and classify system state in this

task.

Although the relation between theDigital display operators' internal

model and their performance is not altogether obvious, one can speculate

about possible decision strategies used by that group of operators based on

the dimensions revealed by the MDS analysis. For instance, the Digital

display operators could have been using a two-step classification procedure:

first, reduce the decision problem from four alter ives to two alternat-

ives by attending to process variables B and H. Once the most likely pair

of state categories is identified (1 or 3; 2 or 4), then attend to process

variable 0 or M. In situations of relatively low uncertainty, that strategy

would equivalent response times. Processing times increase only when cir-

cumstances dictate sampling another process variable (for instance, under

conditions of high uncertainty) Therefore, response times become strictly

a function of the number of process variables the operator has to sample to

reach a classification decision. The importance of distance from the bor-

derline condition would become evident only in those situations where fewer

variables had to be sampled. Thus, MDS may reveal the significant dimen-

sions being used by an operator, but not be sensitive to the subtle influen-

ces on performance that will occur with certain types of classification

strategies.
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Individual Differences

An important finding of this research is that the differences between

individual operators was quite significant. In fact, these results suggest

that focusing on an aggregate analysis and ignoring the unique way in which

individual operators internally represent decision criteria can be danger-

ous.

Fortunately, MDS provides the data necessary for assessing the disp~r-

ity between the Group analysis and individual operator dimensional configur-

ations. For instance, Distance from the Borderline was a very dominant

overall dimension for the Configural operators, but the importance of that

dimension varied between operators. Without ascertaining the importance of

a dimension for an operator, assumptions about the significance of a dimen-

sion may not be valid. This is especially important to designers of deci-

sion aiding systems; without a method for assessing the salience of decision

criteria for all operators, there is no way to assure that the model being

used by the decision aid is congruent with the operators internal conceptual

model of the system. This research showed that MDS can be used to test

those assumptions.

In addition, MDS may aid in the design of adaptive decision aiding

systems. Customizing an interface to suit individual operators presupposes

that the decision aid know something about each operator's mental model.

MDS can provide information about the composition and structure of those
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models so that the decision aid will understand how a particular operator

weights the importance of certain decision criteria.

In summary, MDS has been shown in this research to be a potentially

useful tool for assessing the internal models used by operators to represent

state category information, and relate that model to performance. In addi-

tion, the methodology provides insight into the way in which a particular

type of display can affect an operator's conceptual model.
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Table 1

Ranges of Values for Process Variables

Process Variable

System

State 0 M B H

1 25-51 49-75 0-26 74-100

2 25-51 49-75 74-100 0-26

3 49-75 25-51 0-26 74-100

4 49-75 25-52 74-100 0-26

Table 2

Category Position of Instances

Selected for Pairwise Similarity Ratings

Distance From Borderline

System

State 3 2 1 Border

1 A B C D

2 E F G H

3 I J K L

4 M N 0 P
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Table 3

Summary of Multidimensional Scaling

Analysis of Similarity Ratings

Pre-Training Post Training

#dim Stress #dim Stress

Configural

Group: 3 .180 3 .185

Individual: 5 .037 4.2 .030

Digital

Group: 3 .189 4 .165

Individual: 4.6 .026 4.5 .028

Table 4

Dimensions Identified from the Spatial Configurations

for the Configural and Digital Display Groups

Configural Digital

category membership category membership

borderline position borderline position

approximate shape middle/extreme values(4 groups)

orientation categories 1 and 3; 2 and 4

line vector between Q,M same Q and M

exact shape mid/extreme values(8 groups)
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Table 5

Structural Ratios for Each Operator's Dimensions

Identified in the Spatial Configurations

Configural Display Group

Sub Cat mem Borderline Orientation Q and M Approx shp Exact WE
1 0 -641 ------ 0.559* i391 ----- 1.283
2 0.562 ----- 0.550* 1.311 ----- 1.256
3 0.781 0.765 0.990 0.629*
4 0.657* 1.034 0.670
5 0.841 0.963 0.608*
6 0.751* 0.954 0.775 0.857
7 0.735* 0.943
8 0.942 0.732 0.325*
9 0.887 0.772 1.056 0.689*
10 0.772 0.992 0.908 0.676*

Digital Display Group

Sub Cat mem Borderline SS1&3;2&4 0 and M Mid/Ext:4 Mid/Ext:2
11 0.368* .384 - 0.528
12 0.843 0.948 0.858 0.829*
13 0.992 0.891*
14 1.320 1.112 0.487*
15 0.669 0.028* 0.037 0.041
16 0.875 0.876*
17 0.735 0.344* 0.694 0.388
18 1.205 0.752 ----- 0.720 0.536*
19 0.302* 0.501 0.724 0.690
20 0.869* 0.885 1.088

* indicates the dominant dimension for each operator
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Figure Captions

Figures la and 2b. Reprcduction of the Digital display (Figure la) and
the Configural display (Figure ib) with each showing the
same instance of System State Category 3.

Figures 2a and 2b. Representative 2-dimensional spatial configurations
for a Configural display group operator (Figuri'2a) and for
a Digital display group operator (Figure 2b).

Figure 3. The relation between an instances' position in a state
category relative to the borderline conditions and scaled
distances from the borderline for the Configural and Digital
display.

Figure 4. Response times to the Configural and Digital displays as a
function of Distance from the Borderline condition.
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